Preview

Siberian Herald of Agricultural Science

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the need for a paradigm shift in agricultural research (message two)

https://doi.org/10.26898/0370-8799-2024-9-11

Abstract

Analysis of the agricultural research directions related to the prevailing modern paradigm and the fourth agricultural revolution is presented. The next stage in the development of digitalization of agriculture is smart farming, which involves the use of various technological innovations, including machine learning, computer vision, remote sensing, geo-information modeling, and the Internet of Things. The peculiarities of using digital technologies and methods of artificial intelligence on farming systems blocks are considered, which are expedient to apply in planning scientific research and analyzing the obtained results. Formation of crop rotations is carried out by modeling their productivity using various artificial intelligence approaches based on time series of crop yields and remote sensing data. Selection of the main tillage system is possible with the help of predictive models of cultivated crop yields and other basic parameters of its efficiency with the help of machine learning. The development of recommendations on timing, doses and methods of fertilizer application is carried out with the help of artificial intelligence-based models. Synchronization of fertilizer application with soil properties, weather conditions and cultivated crops is regulated through various digital management approaches. Protection of crops from pests is realized in the system of forecasting their development on the basis of weather data, control actions and other types of data. Predictive models of crop yields in agricultural research should solve the problems of crop simulation and control actions under office-compiled conditions. Based on the results of virtual models, programs and field study plans are developed to validate these models. Selection and support of agro-technologies are implemented in the system of registration and analysis of the interaction of a wide range of conditions and factors by means of proximal and remote sensing (monitoring) with subsequent modeling of the processes and objects for the creation of a decision support system in the form of DFMS (digital farming management system). In order to scale and adapt the innovations, it is advisable to utilize the capabilities of citizen science and Web-based networking platforms. 

About the Author

V. K. Kalichkin
Сибирский федеральный научный центр агробиотехнологий Российской академии наук

 Doctor of Science in Agriculture, Professor, Head Researcher

PO Box 463, Krasnoobsk, Novosibirsk Region, 630501



References

1. Maffezzoli F., Ardolino M., Bacchetti A., Perona M., Renga F. Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits. Futures, 2022, vol. 142, p. 102998. DOI: 10.1016/j.futures.2022.102998.

2. Karunathilake E., Le A.T., Heo S., Chung Y.S., Mansoor S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 2023, vol. 13, no. 8, р. 1593. DOI: 10.3390/agriculture13081593.

3. Saiz-Rubio V., Rovira-Más F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 2020, vol. 10, no. 2, р. 207. DOI: 10.3390/agronomy10020207.

4. De la Parte M.S.E., Martínez-Ortega J.F., Castillejo P. Spatio-temporal semantic data management systems for IoT in agriculture 5.0: Challenges and future directions. Internet of Things, 2024, vol. 25, р. 101030. DOI: 10.1016/j.iot.2023.101030.

5. Fenz S., Neubauer T., Heurix J., Friedel J.K., Wohlmuth M.-L. AI-and data-driven pre-crop values and crop rotation matrices. European Journal of Agronomy, 2023, vol. 150, p. 126949. DOI: 10.1016/j.eja.2023.126949.

6. Dupuis A., Dadouchi C., Agard B. Methodology for multi-temporal prediction of crop rotations using recurrent neural networks. Smart Agricultural Technology, 2023, vol. 4, р. 100152. DOI: 10.1016/j.atech.2022.100152.

7. Liang Z., Xubc Z., Chengabc J., Maab B., Congb W.-F., Zhang C.F., van der Werf W., Groot J.C.J. Designing diversified crop rotations to advance sustainability: A method and an application. Sustainable Production and Consumption, 2023, vol. 40, pp. 532–544. DOI: 10.1016/j.spc.2023.07.018.

8. Gokhale C.S., Sharma N. Optimizing crop rotations via Parrondo’s paradox for sustainable agriculture. Royal Society Open Science, 2023, vol. 10, no. 5, р. 221401. DOI: 10.1098/rsos.221401.

9. Dupuis A., Dadouchi C., Agard B. Predicting crop rotations using process mining techniques and Markov principals. Computers and Electronics in Agriculture, 2022, vol. 194, р. 106686. DOI: 10.1016/j.compag.2022.106686.

10. Ogieriakhi M.O., Woodward R.T. Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Security, 2022, vol. 9, р. 100077. DOI: 10.1016/j.soisec.2022.100077.

11. Abbaspour-Gilandeh Y., Abbaspour-Gilandeh M., Babaie H.A. Shahgoli G. Modeling agricultural soil bulk density using artificial neural network and adaptive neuro-fuzzy inference system. Earth Science Informatics, 2023, vol. 16, pp. 57–65. DOI: 10.1007/s12145-022-00920-6.

12. Kalichkin V.K., Maksimovich K.Yu., Fedorov D.S., Garafutdinova L.V. Conceptual model of digital nitrogen management in agricultural crops. Rossijskaya sel'skohozyajstvennaya nauka = Russian Agricultural Sciences, 2024, no. 1, pp. 54–63. (In Russian). DOI: 10.31857/S2500262722040000.

13. Austin R., Osmond D., Shelton S. Optimum nitrogen rates for maize and wheat in North Carolina. Agronomy Journal, 2019, vol. 111, no. 5, pp. 2558–2568. DOI: 10.2134/agronj2019.04.0286.

14. Sharma V., Tripathi A.K., Mittal H. Technological revolutions in smart farming: Current trends, challenges & future directions. Computers and Electronics in Agriculture, 2022, vol. 201, p. 107217. DOI: 10.1016/j.compag.2022.107217.

15. Somwanshi K., Sonawane P.R., Nagraj P., Lohar T.S., Jadhav M.S. Crop Prediction and Fertilizer Recommendation Using Machine Learning. International Journal of Engineering Research and Applications, 2023, vol. 13, no. 3, pp. 28–32. DOI: 10.9790/9622-13032832.

16. Ge W., Zhou J., Zheng P., Yuan L., Rottok L.T. A recommendation model of rice fertilization using knowledge graph and case-based reasoning. Computers and Electronics in Agriculture, 2024, vol. 219, р. 108751. DOI: 10.1016/j.compag.2024.108751.

17. Kalichkin V.K., Alsova O.K., Maksimovich K.Yu., Vasilyeva N.V. Application of machine learning to forecast the contamination of crops. Rossijskaya sel'skohozyajstvennaya nauka = Russian Agricultural Sciences, 2022, no. 1, pp. 88–94. (In Russian). DOI: 10.31857/S2500-2627202210-0.

18. Kalichkin V.K., Maksimovich K.Yu., Shpak V.A., Galimov R.R., Pakul A.L. Application of the Bayesian trust network and multinomial logistic regression to predict the degree of contamination of agricultural lands. Yuzhno-Sibirskij nauchnyj vestnik = South-Siberian Scientific Bulletin, 2021, no. 6 (40), pp. 10–17. (In Russian). DOI: 10.25699/SSSB.2021.40.6.049.

19. Fenu G., Malloci F.M. Forecasting plant and crop disease: an explorative study on current algorithms. Big Data and Cognitive Computing, 2021, vol. 5, no. 1, p. 2. DOI: 10.3390/bdcc5010002.

20. Ahmad A., Saraswat D., El Gamal A. A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agricultural Technology, 2023, vol. 3, р. 100083. DOI: 10.1016/j.atech.2022.100083.

21. Maksimovich K.Yu., Fedorov D.S., Kalichkin V.K., Vasilyeva N.V., Galimov R.R., Kizimova T.A., Riksen V.S. Forecasting the yield of spring wheat based on the use of a neural network in the conditions of the forest steppe of the Ob region. Yuzhno-Sibirskij nauchnyj vestnik = South-Siberian Scientific Bulletin, 2022, no. 6, pp. 333–338. (In Russian).

22. Kalichkin V.K., Fedorov D.S., Alsova O.K., Maksimovich K.Yu. Development of software for analyzing and forecasting crop yields. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC, 2022, vol. 36, no. 1, pp. 51–56. (In Russian). DOI: 10.53859/02352451_2022_36_1_51.

23. Rose M., Rose T., Kage H. Spectral reflection and crop parameters: can the disentanglement of primary and secondary traits lead to more robust and extensible prediction models? Precision Agriculture, 2023, vol. 24, pp. 607–626. DOI: 10.1007/s11119-022-09961-9.

24. Song Y., Wang J., Shan B. Estimation of Winter Wheat Yield from UAV-Based Multi-Temporal Imagery Using Crop Allometric Relationship and SAFY Model. Drones, 2021, vol. 5, р. 78. DOI: 10.3390/drones5030078.

25. Kalichkin V.K., Maksimovich K.Yu. Methodology for forming a digital farming management system. Sibirskij vestnik sel'skohozyajstvennoj nauki = Siberian Herald of Agricultural Science, 2024, vol. 54, no. 3, pp. 5–20. (In Russian). DOI: 10.26898/0370-8799-2024-3-1.

26. Stern P.C., Wolske K.S., Dietz T. Design principles for climate change decisions. Current Opinion in Environmental Sustainability, 2021, vol. 52, pp. 9–18. DOI: 10.1016/j.cosust.2021.05.002.

27. Van De Gevel J., van Etten J., Deterding S. Citizen science breathes new life into participatory agricultural research. A review. Agronomy for Sustainable Development, 2020, vol. 40, no. 5, pp. 1–17. DOI: 10.1007/s13593-020-00636-1.

28. Schut M., Leeuwis C., Thiele G. Science of Scaling: Understanding and guiding the scaling of innovation for societal outcomes. Agricultural Systems, 2020, vol. 184, р. 102908. DOI: 10.1016/j.agsy.2020.102908.

29. Woltering L., Lenero E.M.V., Boa-Alvarado M., Loon J.V., Ubels J., Leeuwis C. Supporting a systems approach to scaling for all; insights from using the Scaling Scan tool. Agricultural Systems, 2024, vol. 217, р. 103927. DOI: 10.1016/j.agsy.2024.103927.

30. Van Ewijk E., Ataa-Asantewaa M., Asubonteng K.O., Van Leynseele Y.P.B., Derkyi M., Laven A., Ros Tonen M.A.F. Farmer-Centred Multi-stakeholder Platforms: From Iterative Approach to Conceptual Embedding. Journal of the Knowledge Economy, 2024. DOI: 10.1007/s13132-023-01661-7.


Review

For citations:


Kalichkin V.K. On the need for a paradigm shift in agricultural research (message two). Siberian Herald of Agricultural Science. 2024;54(9):102-115. https://doi.org/10.26898/0370-8799-2024-9-11

Views: 19


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)