Preview

Siberian Herald of Agricultural Science

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Plant disease diagnostics using an unmanned aerial vehicle with low-power computing modules

https://doi.org/10.26898/0370-8799-2025-10-10

Abstract

Research is presented on solving a pressing problem in agricultural engineering: the development of an energy-efficient onboard system for the automatic detection of phytopathological plant diseases using computer vision and deep learning methods. The study was conducted in the context of the growing need for intelligent agricultural monitoring technologies capable of functioning in field conditions with limited computing resources. The object of the study is wheat crops examined in the agricultural landscapes of the Republic of Bashkortostan in various phases of vegetation. The scientific novelty lies in the construction of a modified neural network detector architecture based on a lightweight version of YOLO, including low-cost convolutional blocks GhostConv and MBConv, attention modules SE and CBAM, as well as a multi-level feature aggregation structure BiFPN with an additional output P2 to increase sensitivity to small-scale disease symptoms. Unlike the basic YOLOv5s architecture, the proposed solution is optimized for operation on NavQ Plus, Jetson TX2, and Raspberry Pi 4 computing modules. The model was trained on a sample of 7,500 images manually labeled by agricultural specialists for brown and yellow rust. To validate the performance, key metrics were used: Precision, Recall, F1-score, average IoU, FPS, and power efficiency (FPS/W). The experimental results showed the following achievements: F1-score up to 0.978, IoU up to 0.82, processing speed up to 16.8 FPS and power efficiency of 2.7 FPS/W on the NavQ Plus platform. A comparative analysis with the YOLOv5s baseline model confirmed the superiority of the proposed architecture across all key parameters. The developed model can serve as the foundation for building intelligent precision farming solutions, enabling early disease detection and adaptive application of crop protection products with minimal energy and computational costs.

About the Authors

S. G. Mudarisov
Bashkir State Agrarian University
Russian Federation

Salavat G. Mudarisov, Department Head, Doctor of Science in Engineering, Professor

Ufa, Republic of Bashkortostan

 



I. R. Miftakhov
Bashkir State Agrarian University
Russian Federation

Ilnur R. Miftakhov, Senior Lecturer of the De- partment, Candidate of Science in Engineering

Ufa, Republic of Bashkortostan



I. M. Farkhutdinov
Bashkir State Agrarian University
Russian Federation

Ildar M. Farkhutdinov, Assistant Professor, Doctor of Science in Engineering, Associate Professor

Ufa, Republic of Bashkortostan



B. Z. Bikbulatov
Bashkir State Agrarian University
Russian Federation

Bulat Z. Bikbulatov, Laboratory Head

Ufa, Republic of Bashkortostan



References

1. Wang S., Xu D., Liang H., Bai Y., Li X., Zhou J., Su C., Wei W. Advances in deep learning applications for plant disease and pest detection: a review // Remote Sensing. 2025. Vol. 17. N 4. Art. 698. DOI: 10.3390/rs17040698.

2. Kouadio L., El Jarroudi M., Belabess Z., Boulif M., Blanke M.M., Bock C.H., Olatinwo R., Valdés-Gómez H., Boulard T. A review on UAVbased applications for plant disease detection and monitoring // Remote Sensing. 2023. Vol. 15. N 17. Art. 4273. DOI: 10.3390/rs15174273.

3. Duhan S., Sharma A., Kaur H., Kumar R. RTR_ Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification // Current Plant Biology. 2025. Vol. 42. P. 100459. DOI: 10.1016/j.cpb.2025.100459.

4. Upadhyay A., Chandel N.S., Singh K.P., Chakraborty S.K., Nandede B.M., Mohit K., Subeesh A., Upendar K., Salem A., Elbeltagi A. Deep learning and computer vision in plant disease detection: a comprehensive review // Artificial Intelligence Review. 2025. Vol. 58. N 3. P. 92–115. DOI: 10.1007/s10462-024-10865-2.

5. Joseph D.S., Pawar P.M., Chakradeo K. Real-time plant disease dataset development and detection of plant disease using deep learning // IEEE Access. 2024. Vol. 12. P. 16310–16333. DOI: 10.1109/ACCESS.2024.3368172.

6. Sambana B., Nnadi H.S., Wajid M.A., Thomas R., Aluko O. An efficient plant disease detection using transfer learning approach // Scientific Reports. 2025. Vol. 15. P. 19082. DOI: 10.1038/ s41598-025-02271-w.

7. Shoaib M., Sadeghi-Niaraki A., Ali F., Hussain I., Khalid S. Leveraging deep learning for plant disease and pest detection: a comprehensive review and future directions // Frontiers in Plant Science. 2025. Vol. 16. Art. 1538163. DOI: 10.3389/fpls.2025.1538163.

8. Silva P.E.C., Almeida J. An edge computing-based solution for real-time leaf disease classification using thermal imaging // IEEE Geoscience and Remote Sensing Letters. 2024. Vol. 22. P. 1–5. DOI: 10.1109/LGRS.2024.3456637.

9. Shao R., Bi X.-J., Chen Z. Hybrid ViT-CNN network for fine-grained image classification // IEEE Signal Processing Letters. 2024. Vol. 31. P. 1109–1113. DOI: 10.1109/LSP.2024.3386112.

10. Mudarisov S.G., Miftakhov I.R. Deep learning methods and UAV technologies for crop disease detection // Agricultural Machinery and Technologies. 2024. Vol. 18. N 4. P. 24–33. DOI: 10.22314/2073-7599-2024-18-4-24-33.

11. Chen X., Li W., Zhang Z., Zhang H., Liu J., Yang Y. An improved algorithm based on YOLOv5 for detecting Ambrosia trifida in UAV imagery // Frontiers in Plant Science. 2024. Vol. 15. Art. 1360419. DOI: 10.3389/fpls.2024.1360419.

12. Jiang W., Song J., Chen Z., Qu S. Mobile-friendly under-sampling single-pixel imaging based on a lightweight hybrid CNN-ViT architecture // Optics Express. 2024. Vol. 32. N 27. P. 48672– 48685. DOI: 10.1364/OE.546375.

13. Budyonny S.A., Lazarev V.D., Zakharenko N.N. Eco2AI: carbon emissions tracking of machine learning models as the first step towards sus- tainable AI. Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya = Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, vol. 508, no. 1, pp. 134–145. (In Russian). DOI: 10.31857/S2686954322070232.

14. Kuznetsova A.A. Maleva T.V., Solovyov V.I. YOLOV3, Yolov5 for apple detection. Matematicheskie metody v tekhnike i tekhnologiyakh = Mathematical methods in engineering and technology, 2020, vol. 12-2, pp. 95–97. (In Russian).

15. Bhagat S., Kokare M.B., Haswani V., Hambarde P., Taori T., Ghante P.H., Patil D.K., Patil D. Advancing real-time plant disease detection: A lightweight deep learning approach and novel dataset for pigeon pea crop // Smart Agricultural Technology. 2024. Vol. 7. P. 100408. DOI: 10.1016/j.atech.2024.100408.

16. Quan S., Wang J., Jia Z., Yang M., Xu Q. MS-Net: a novel lightweight and precise model for plant disease identification // Frontiers in Plant Science. 2023. Vol. 14. Art. 1276728. DOI: 10.3389/fpls.2023.1276728.

17. Selvaraj K., Selvanarayanan R., Gopalsamy Venkatesan S.K., Rajendran S. Future-proof coffee plant disease detection based on counter-factual recommendation with a hybrid vision transformer and convolutional neural network model // Agrociencia. 2025. Vol. 59-4. DOI: 10.47163/ agrociencia.v59i4.3385.

18. Zhong Y, Teng Z., Tong M. LightMixer: A novel lightweight convolutional neural network for tomato disease detection // Frontiers in Plant Science. 2023. Vol. 14. P. 1166296. DOI: 10.3389/ fpls.2023.1166296.


Review

For citations:


Mudarisov S.G., Miftakhov I.R., Farkhutdinov I.M., Bikbulatov B.Z. Plant disease diagnostics using an unmanned aerial vehicle with low-power computing modules. Siberian Herald of Agricultural Science. 2025;55(10):88–99. (In Russ.) https://doi.org/10.26898/0370-8799-2025-10-10

Views: 9


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)