Preview

Siberian Herald of Agricultural Science

Advanced search

Computer-aided method for land classification based on relief morphometry analysis

Abstract

There are suggested the computer-aided methods for classification of placor lands using Geographical Information Systems (GIS) and a neural expert system. Quantitative relief characteristics are adopted as a basis for recording. In the GIS ArcGIS 10 system, an electronic map of placor lands located in Maslyanino District of Novosibirsk Region was created, a database consisting of topographical and soil maps was formed. By the method of ANUDEM interpolation was developed a topologically correct digital relief model containing maps as follows: hypsometric; angle and exposure of slopes; plan, profile and total curvature of the Earth’s surface; cumulative runoff. The boundaries of elementary surfaces, being homogeneous morphological formations, were established. Parameters reflecting the intensity of erosion processes (SPI index) were taken into consideration. The main point of the classification is to attribute the elementary surfaces to a certain group of lands as to a complex of traits, for which particular scales containing characteristics of relief, soil cover, drainage of a territory, a degree of the erosion development have been created. A knowledge base was formed to train multi-layer neural network using GIS databases and particular scales; a neural network was trained. By means of the neural expert system, classification and topology of lands were conducted. Placor lands are located on flat and weakly expressive sites, and characterized by the following traits: plan curvature of the Earth’s surface of 0 to 0.03, profile of 0 to 0.15, and total of 0 to 0.22; angles of relief incline less than 1.5o; horizontal dismemberment of relief less than 0.5 km/km2; vertical dismemberment of relief less 5 m; SPI index changes from - 13.80 to - 6.47.

About the Authors

V. K. Kalichkin
Siberian Federal Scientific Centre of Agro-BioTechnologies, Russian Academy of Sciences
Russian Federation


A. I. Pavlova
Siberian Federal Scientific Centre of Agro-BioTechnologies, Russian Academy of Sciences
Russian Federation


References

1. Агроэкологическая оценка земель, проектирова-ние адаптивно-ландшафтных систем земледе-лия и агротехнологий / Метод. рук-во: под ред. В.И. Кирюшина, А.Л. Иванова. - М.: Росин-формагротех, 2005. - 784 с.

2. Танасиенко А.А. Специфика эрозии почв в Сибири. - Новосибирск: Изд-во СО РАН, 2003. - 175 с.

3. Рейнгард Я.Р. Деградация почв экосистем юга Западной Сибири. - Омск, Лодзь (Польша), 2009. - 634 c.

4. Wilson J.P. Terrain Analysis: Princeples and Applications, 2000. - 520 p.

5. Geomorphometry: Concepts, Software, Applicat-ions / by editing Tomislav Hengl, Hannes I. - Reuter, 2009. - 765 p.

6. Florunsky I. Digital Terrain Analysis in soil science and geology. - Elselver, 2012. - 379 p.

7. Пегат А. Нечеткое моделирование и управле-ние / Пер. с англ. А.Г. Подвесовского и Ю.В. Тюменцева. - 2-е изд. - М.: БИНОМ. Лаборатория знаний, 2013. - 798 с.

8. Барский А.Б. Нейронные сети: распознавание, управление, принятие решений. - М.: Финан-сы и статистика, 2004. - 175 с.

9. Рутковский Л. Методы и технологии искус-ственного интеллекта / Пер. с польского И.Д. Рудинского. - М.: Горячая Линия-Теле-ком, 2010. - 519 с.

10. Редько В.Г. Эволюция, нейронные сети, ин-теллект модели и концепция эволюционной кибернетики. - М.: ЛИБРОКОМ, 2011. - 220 с.

11. Павлова А.И., Каличкин В.К. Использование геоморфометрического анализа рельефа при создании баз данных сельскохозяйственных земель // Сиб. вестн. с.-х. науки. - 2016. - № 5. - С. 5-12.

12. Hutchinson M.F. A new method for gridding elevation and stream line data with automatic removal of pits. Journal of Hydrology, 1989. - 106. - P. 211 -232.

13. Hegl T. Hiding the right pixel size // Computers and Geosciences, 2006. - Vol. 32 (9). - P. 1283- 1298.

14. Ласточкин А.Н. Морфологическая основа си-стематики и картографирования контроли-руемых рельефом компонентов ландшафта // Изв. АН СССР. Сер. геогр. - 1991. - № 3. - С. 7-18.

15. Ласточкин А.Н. Системно-морфологическое основание наук о Земле (геотопология, структурная география и общая теория геосистем). - СПб.: Изд-во СПбГУ, 2002. - 762 с.

16. Омелько А.М., Яковлева А.Н. Cоздание карт потенциальной растительности с использова-нием генерализованных аддитивных моделей. - Электронный ресурс: URL: http://www.biosoil. ru/files/00010291.pdf

17. Глотов А.А. Применение данных о рельефе для эффективного использования сельскохозяй-ственных земель // Геопрофи. - 2013. - № 4. - С. 20-22.

18. Danielson Tyler Utilizing a High Resolution Digital Elevation Model (DEM) to Develop a Stream Power Index (SPI) for the Gilmore Creek Watershed in Winona County, Minnesota. - Электронный ресурс: http://www.gis.smumn. edu/GradProjects/DanielsonT.pdf

19. Erosion Vulnerability Assessment for Agricultural Lands (EVAAL). Wisconsin Department of Natural Resources. 2016. - Электронный ресурс: URL: http://dnr.wi.gov/topic/nonpoint/evaal. html

20. Jenks George F. The Data Model Concept in Statistical Mapping // International Yearbook of Cartography. - 1967. - № 7. - P. 186-190.

21. Основные геоморфометрические параметры: теория. 2015. - Электронный ресурс: URL: http://gis-lab.info/qa/geomorphometric-parameters-theory.html

22. Zeverbergen L.W., Thorne C.R. Quantitative Analysis of Land Surface Topography // Earth Surface Processes and Landforms. - 1987. - N 12. - P. 47-56.


Review

For citations:


Kalichkin V.K., Pavlova A.I. Computer-aided method for land classification based on relief morphometry analysis. Siberian Herald of Agricultural Science. 2017;47(1):5-11. (In Russ.)

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)