Preview

Siberian Herald of Agricultural Science

Advanced search

BERRY MATURITY ASSESSMENT METHOD WITHOUT ITS DAMAGE

https://doi.org/10.26898/0370-8799-2018-2-10

Abstract

Commercial production of horticultural produce requires instrumental control means of physical properties of plants and technological methods. One of the most important parameters of high quality harvest of fruit and berries is their maturity. The main maturity assessment methods existing in Russia and other countries are analyzed.  It is established that the method of impedance spectroscopy is preferable in the use of portable means for berry maturity determination in the fi eld conditions. Research on maturity of blackcurrant berry Altai late and sea buckthorn Altai was conducted. The sample number of the chosen varieties of berries was 1000 pieces for each variety. They were harvested in accordance with their ripening stage. To determine the maturity of berries the dispersion coeffi cient of berry tissue polarization was taken as an informative parameter, which is the relation of modules of electric impedances measured at two frequencies. The assessment method of berry maturity degree consisting of construction and analysis of coeffi cient distribution hodograph was proposed. Distribution was carried out on a uniform range of harmonic frequencies of 100 to 106 Hz. The results of the research showed that maturity assessment is possible after 1-2 weeks from the beginning of berry ripening. The insignifi cant difference in dynamic changes of dispersion coeffi cient of berry tissue polarization is explained by specifi c content and disintegration of sugars and acids in sea buckthorn and currant. The assessment method of berry maturity allows to create portable devices that would reduce their losses during mechanical harvesting and storage.

About the Authors

A. F. Aleinikov
Siberian Federal Scientifi c Center of Agro-BioTechnologies, RAS; Novosibirsk State Technical University
Russian Federation

Doctor of Science in Engineering, Professor, Head Researcher.

Krasnoobsk, Novosibirsk region, 630501; 20, Karl Marx Ave, Novosibirsk, 630073



V. V. Mineyev
Siberian Federal Scientifi c Center of Agro-BioTechnologies, RAS
Russian Federation

Senior Researcher.

Krasnoobsk, Novosibirsk region, 630501



References

1. Korotkii I.A. Sibirskaya yagoda. Fizikokhimicheskie osnovy tekhnologii nizkotemperaturnogo konservirovaniya. – Kemerovo, 2007. – 146 s.

2. Franchuk E.P. Tovarnye kachestva plodov. – M.: Agropromizdat, 1986. – 269 s.

3. Prikaz Minzdrava № 614 ot 19.08.2016. – [Elektronnyi resurs]: URL: https://normativ.kontur.ru/document?moduleId=1&documentId=279426

4. Perspektivy rosta proizvodstva plodovo-yagodnoi produktsii (Novosibirskaya oblast’) – [Elektronnyi resurs]: URL:http://naukarus.com/perspektivy-rosta-proizvodstva-plodovoyagodnoy-produktsii-novosibirskaya-oblast

5. Cédric Baudrit, Nathalie Perrot, Jean Marie Brousset et al. A probabilistic graphical model for describing the grape berry maturity // Computers and Electronics in Agriculture – 2015. – N 118. – P. 124–135.

6. Rodikov S.A. Metody i ustroistva analiza zrelosti yablok. – M.: FIZMATLIT, 2009. – 216 s.

7. Metodicheskoe i analiticheskoe obespechenie issledovanii po sadovodstvu. – Krasnodar: Izd-vo Sev.-Kavk. zon. nauch.-issled. in-ta sadovodstva i vinogradarstva., 2010. – 299 s.

8. Figueiredo Neto A., Almeida F.A.C., Olivier N.C. et al. Mechanical behavior of pumpkin fruits subjected to compression during maturation. Pesq. Agropec. Trop. – 2013. – N 43 (3). – P. 223–231.

9. Véronique M. Gomes, Armando M. Fernandes, Arlete Faia et al. Computers and Comparison of different approaches for the prediction of sugar content in new vintages of whole Port wine grape berries using hyperspectral imaging // Electronics in Agriculture. – 2017. – N 140. – P. 244–254.

10. Gomes V., Fernandes A., Martins-Lopes et al. Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties // Food Chem. – 2017. – N 218. – P. 40–46.

11. Prats-Montalbán J.M., de Juan A., Ferrer A. Multivariate image analysis: Areviewwith applications // Chemom. Intell. Lab. Syst. – 2011. – Vol. 107. – P. 1–23.

12. González-Caballero V., Pérez-Marin D., Lуpez M.-I. et al. Optimization of NIR spectral data management for quality control of grape bunches during on-vine ripening // Sensors. – 2011. –N 11. – P. 6109–6124.

13. Hernández-Hierro J.M., Nogales-Bueno J., Rodriguez-Pulido F.J. et al. Feasibility study on the use of near-infrared hyperspectral imaging for the screening of anthocyanins in intact grapes during ripening // J. Agric. Food Chem. – 2013. – N 61. – P. 9804–9809.

14. Le Moigne M., Dufour E., Bertrand D., Maury C. et al. Front face fl uorescence spectroscopy and visible spectroscopy coupled with chemometrics have the potential to characterise ripening of Cabernet Franc grape // Anal. Chim. Acta. –2008. – N. 621. – P. 8–18.

15. De’bska B., Guzowska-Sґwider B. Application of artifi cial neural network in food classifi cation // Anal. Chim. Acta. – 2011. – N 705. – P. 283–291.

16. Fernandes A.M., Franco C., Mendes-Ferreira A., Mendes-Faia A. Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks // Comput. Electron. Agric. – 2015. – N 115. – P. 88–96.

17. Gomes V., Fernandes A., Martins-Lopes P., Pereira L. et al. Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties // Food Chem. – 2017. – N 218. – P. 40–46.

18. Acácio Figueiredo Neto, Nelson Cárdenas Olivier, Erlon Rabelo Cordeiro et al. Determination of mango ripening degree by electrical impedance spectroscopy // Computers and Electronics in Agriculture – 2017. – N 143. – P. 222–226.

19. Chowdhury A., Bera T.K., Ghoshal D., Chakraborty B. Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy // Proc. IEEE Adv. Biol. Med. Soc. – 2015. – N 1. – Р. 97–99.

20. Goulao L.F., Oliveira C.M. Cell wall modifi cations during fruit ripening: when a fruit is not the fruit – a Review // Trends Food Sci. Technol. – 2008. – N 19. – P. 4–25.

21. Schwann H.P. Electrical properties of tissue and cell suspensions: mechanisms and models // Proc. IEEE Adv. Biol. Med. Soc. – 2002. – N 1. – P. 70–71.

22. Aleinikov A.F., Gabitov N.M. Formirovanie sistemy informatsionnoi podderzhki zadach marketinga na urovne sel’skokhozyaistvennykh predpriyatii. – Novosibirsk, 2012. – 254 s.

23. Aleinikov A.F., Pal’chikova I.G., Glyanenko V.S., Chugui Yu.V. Ekspress-metod otsenki kachestva myasa // Sib. vestn. s.-kh. nauki. – 2013. – № 6. – S. 71–79.

24. Shenk Kh. Teoriya inzhenernogo eksperimenta. – M.: Mir, 1972. – 381 s.

25. GOST 8.207-76. GSI. Pryamye izmereniya s mnogokratnymi nablyudeniyami. Metody obrabotki rezul’tatov nablyudenii. – M.: Izd-vo standartov, 2001. – 7 s.

26. MI 2083-90 GSI. Izmereniya kosvennye. Opredelenie rezul’tatov izmerenii i otsenivanie ikh pogreshnostei. – M.: Izd-vo standartov, 1991. – 7 s.


Review

For citations:


Aleinikov A.F., Mineyev V.V. BERRY MATURITY ASSESSMENT METHOD WITHOUT ITS DAMAGE. Siberian Herald of Agricultural Science. 2018;48(2):72-80. (In Russ.) https://doi.org/10.26898/0370-8799-2018-2-10

Views: 402


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)