Preview

Siberian Herald of Agricultural Science

Advanced search

METHOD OF NON-INVASIVE DETERMINATION OF FUNGAL DISEASES OF COMMON GARDEN STRAWBERRY

https://doi.org/10.26898/0370-8799-2018-3-10

Abstract

The relevance of early undamaging diagnosis of fungal, viral and bacterial diseases of common garden strawberry is proved. External symptoms of fungal diseases are given. On the basis of literature data, the existing optical methods of early diagnostics of cultivated plants are analyzed. It is established that the methods of pixel calculation of the image in the space of color channels of red, green and blue colors are more preferable than other optical methods for detection of strawberry fungal diseases. This results from the fact that fungal diseases create specific color spots and their distribution on the surface of a plant can be easily identified in the colorimetric CIE Lab system. The work presents a number of approaches to the new method of early diagnostics of common garden strawberry fungal diseases with use of technical means and software developed for the smartphone. Implementation of the method does not require big expenses as it is done in the form of the software application in the smartphone on the basis of the Android operating system. This application will enable to obtain high quality images of a leaf of a plant, it will also provide segmentation and calculation of the quantity and the specific area of color spots on a contour of a leaf. Moreover, it will work with the database of model images of plants with fungal diseases. Classification of fungal diseases and forecasting of their development will be carried out by means of artificial neural network. The proposed method will allow to determine diseases of common garden strawberry leaves, to predict their development and to establish possible borders of distribution on the chosen plantation.

About the Author

A. F. Aleinikov
Siberian Federal Scientifi c Center of Agro-BioTechnologies of the Russian Academy of Sciences; Novosibirsk State Technical University
Russian Federation

Doctor of Science in Engineering, Professor, Head Researcher,

Krasnoobsk, Novosibirsk region, 630501;

20, Karl Marx Ave, Novosibirsk, 630073



References

1. . Linnik T.A. Povyshenie effektivnosti sposobov razmnozheniya sortov zemlyaniki sadovoi (Fragaria × ananassa Duch.), kharakterizuyushchikhsya nizkoi usoobrazuyushchei sposobnost’yu: dis. ... kand. s.-kh. nauk. – M., 2014. – 141 s.

2. Treivas L.Yu., Kashtanova O.F. Bolezni i vrediteli plodovykh rastenii: atlas-opredelitel’; izd. 3-e, isp. i dop. – M.: OOO «Fiton XXI», 2016. – 352 s.

3. Diagnostika boleznei rastenii. – [Elektronnyi resurs]: URL: http://www.activestudy.info/diagnostika-boleznej-rastenij/

4. Maas I.L. Compendium of strawberry diseases // Am. Phytopathol. Soc., St. Paul. 1984. – 138 p.

5. Petruk V.A., Borovikova T.V., Apolinar’eva I.K. Introduktsiya sortov zemlyaniki krupnoplodnoi v usloviyakh lesostepi Zapadnoi Sibiri // Sib. vestn. s.-kh. nauki. – 2016. – № 6. – S. 40–46.

6. Mikhailenko I.M., Voronkov I.V. Metody obnaruzheniya sornyakov, boleznei i vreditelei rastenii po dannym distantsionnogo zondirovaniya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. – 2016. – T. 13, № 3. – S. 72–83.

7. Polder G., van der Heijden G.W., van Doorn J., Baltissen T.A. Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision // Biosyst. Eng. – 2014. – Т. 117. – Р. 35–42.

8. Moshou D., Bravo C., Oberti R., West J., Bodria L., McCartney A., Ramon H. Plant disease detection based on data fusion of hyper-spectral and multispectral fl uorescence imaging using Kohonen maps // Real-Time Imaging. – 2005. – N 11 (2). – Р. 75–83.

9. Rumpf T., Mahlein A.K., Steiner U., Oerke E.C., Dehne H.W., Plьmer L. Early detection and classification of plant diseases with support vector machines based on hyperspectral refl ectance // Comput. Electron. Agric. – 2010. – N 74 (1). – P. 91–99.

10. Mahlein A.K., Steiner U., Hillnhьtter C., Dehne H.W., Oerke E.C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases // Plant Methods. – 2012. – N 8 (1). – P. 3.

11. Rong Zhou, Shun ‘chi Kaneko, Fumio Tanaka et al. Disease detection of Cercospora Leaf Spot in sugar beet by robust template matching // Computers and Electronics in Agriculture. – 2014. – Vol. 108. – P. 58–70.

12. Polder G., van der Heijden G., Jalink H., Snel J.F.H. Correcting and matching time sequence images of plant leaves using penalized likelihood warping and robust point matching. // Comput. Electron. Agric. – 2007. – Vol. 55 (1). – P. 1–15.

13. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. – M.: Tekhnosfera, 2012. – 1104 s.

14. Pal’chikova I.G., Aleinikov A.F., Chugui Yu.V., Vorob’ev V.V., Yarushin T.V., Sartakov V.Yu., Makashev Yu.D., Shvydkov A.N. Portativnyi analizator tsveta poverkhnosti obraztsov biologicheskoi tkani // Sib. nauch. vestn. – 2013. – N 17. – S. 171–175.

15. Pal’chikova I.G., Aleinikov A.F., Vorob’ev V.V., Yarushin T.V., Sartakov V.Yu., Makashev Yu.D., Smirnov E.S. Analizator tsvetovykh kharakteristik poverkhnostei // Sudebnaya ekspertiza: rossiiskii i mezhdunarodnyi opyt: materialy 2-i mezhdunar. nauch.-prakt. konf. (Volgograd, 21–22 maya 2014 g.). – Volgograd: VA MVD Rossii, 2014. – S. 368–372.

16. Aleinikov A.F., Pal’chikova I.G., Obidin Yu. V., Smirnov E.S., Glyanenko V.S., Chugui Yu.V. Tsifrovaya videosistema dlya opredeleniya i analiza tsvetovykh kharakteristik myasnogo syr’ya // Sib. vestn. s.-kh. nauki. – 2013. – № 1. – S. 78–88.

17. Pal’chikova I.G., Obidin Yu.V., Smirnov E.S., Aleinikov A.F., Chugui Yu.V. Programmnoe obespechenie eksperimental’noi ustanovki dlya izmereniya tsvetovykh kharakteristik myasa // Sistema tekhnologii i mashin dlya innovatsionnogo razvitiya APK Rossii: sb. nauch. dokl. Mezhdunar. nauch.-tekhn. konf., posvyashchennoi 145-letiyu so dnya rozhdeniya osnovopolozhnika zemledel’cheskoi mekhaniki V.P. Goryachkina. – 2013. – S. 343–346.

18. Pal’chikova I.G., Aleinikov A.F., Smirnov E.S., Chugui Yu.V., Shvydkov A.N., Nitsievskaya K.N., Sartakov V.Yu., Yarushin T.V. Portativnyi tsvetovoi analizator kachestvennykh izmenenii myasa ptitsy // Dostizheniya nauki i tekhniki v APK. – 2015. – N 9. – S. 80–83.

19. Chaerle L., Van der Straeten D. Imaging techniques and the early detection of plant stress // Trends Plant Sci. – 2000. – Vol. 5 (11). – P. 595–601.

20. Camargo A., Smith J.S. An image-processing based algorithm to automatically identify plant disease visual symptoms // Biosyst. Eng. – 2009. – Vol. 102 – P. 9–21.

21. Arivazhagan S., NewlinShebiah R., Ananthi S., Vishnu Varthini S. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features // Agric. Eng. Int.: CIGRJ. – 2013. – Vol. 15 (1). – P. 211–217.

22. Camargo A., Smith J.S. An image processing based algorithm to automatically identify crop disease visual symptoms // Biosyst. Eng. – 2009. – Vol. 102 (1). – P. 9–21.

23. Chaudhary Piyush, Chaudhari Anand K., Cheeran A.N., Godara Sharda. Color transform based approach for disease spot detection on crop leaf // Int. JComput. Sci. Telecommun. – 2012. – Vol. 3 (6). – P. 65–70.

24. Tushar H. Jaware, Ravindra D. Badgujar, Prashant G. Patil. Crop disease detection using image segmentation, National Conference on Advances in Communication and Computing World(Dhulia, Maharashtra, India) // J. of Science and Technology. – 2012. – P. 190–194.

25. Sanjay B. Dhaygude, Nitin P. Kumbhar. Agricultural plant Leaf Disease Detection Using Image Processing // International J. of Advanced Research in Electrical, Electronics and Instrumentation Engineering , S & S Publication – 2013. – Vol. 2, Is. 1. – P. 599–602.

26. Tian Y., Zhao C., Lu S., Guo X. SVM-based multiple classifier system for recognition of wheat leaf diseases. In: World Automation Congress (WAC 2012). Puerto Vallarta, Mexico. – 2012. – Р. 189–193.

27. Anand H. Kulkarni, Ashwin Patil R.K. Applying image processing technique to detect plant diseases // International J. of Modern Engineering Research. – 2012. – Vol. 2. – Is. 5. – P. 3661–3664.

28. Argenti F., Alparone L., Benelli G. Fast algorithms for texture analysis using co-occurrence matrices // Radar and Signal Processing, IEE Proceedings. – 1990. – N 6. – Vol. 137. – Is. 6. – P. 443–448.

29. Al-Bashish D., Braik M., Bani-Ahmad S. Detection and classification of leaf diseases using K-means-based segmentation and neural networks based classification // Inform. Technol. J.P. – 2011. – Vol. 10.– P. 267–275.

30. Al-Hiary H., Bani-Ahmad S., Reyalat M., Braik M., ALRahamneh Z. Fast and accurate detection and classification of crop diseases // Int. J. Comput. – 2011. – Appl. 17. – P.31–38.

31. Kiran R., Ujwalla G. An overview of the research on crop leaves disease detection using image processing techniques// IOSR J. Comput. Eng. (IOSR-JCE). – 2014. – Vol. 16 (1). – P. 10–16.

32. Revathi P., Hemalatha M. Classification of Cotton Leaf Spot Diseases Using Image Processing Edge Detection Techniques // IEEE International Conference on Emerging Trends in Science, Engineering and Technology (Tiruchirappalli, Tamilnadu, India). – 2012. – P. 169–173.

33. Yan-Cheng Zhang, Han-Ping Mao, Bo Hu, Ming-Xi Li. Feature Selection of Cotton Disease leaves Image Based on Fuzzy feature Selection Techniques // Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition (Beijing, China, Nov.). – 2007. – P. 124–129.

34. Menukaewjinda A., Kumsawat P., Attakitmongcol K., Srikaew A. Grape leaf disease detection from color imagery using hybrid intelligent system // Proceedings of electrical Engineering/electronics, Computer, Telecommunications and Information technology (ECTI-CON). – 2008. – Vol. 1. – P. 513–516

35. Haiguang Wang, Guanlin Li, Zhanhong Ma, Xiaolong Li. Image Recognition of Plant Diseases Based on Principal Component Analysis and Neural // Networks, 8th International Conference on Natural Computation(Chongqing, China) . – 2012 – P. 246–251.

36. Mokhled S., Al-Tarawneh. An Empirical Investigation of Olive Leave Spot Disease Using AutoCropping Segmentation and Fuzzy C-Means Classification // World Applied Sciences Journal. – 2013. – Vol. 23 – N. 9. – P. 1207–1211.

37. Petrellis Nikos. A Smart Phone Image Processing Application for Plant Disease Diagnosis // 6th International Conference on Modern Circuits and Systems Technologies (MOCAST). – May 04–06. – 2017.

38. Aleinikov A.F., Barillo D.V. Opredelenie kachestva produktov s pomoshch’yu smartfona // Pishcha, ekologiya, kachestvo: tr. XIV mezhdunar. nauch.-prak. Konf. (Novosibirsk, 8–10 noyabrya 2017 g.). – Novosibirsk: Zolotoi kolos, 2017. – S. 36–40.

39. Loginov V. Obzor poleznykh prilozhenii dlya smartfonov i planshetov. – [Elektronnyi resurs]: https://www.dgl.ru/articles/obzorpoleznyh-prilojeniy-dlya-smartfonov-i-planshetov-vse-svoe-noshu-s-soboy_5632.html

40. Aleinikov A.F., Stepochkin P.I., Grebennikova I.G., Chanyshev D.I., Golyshev D. N. Programmno-algoritmicheskie sredstva i iskusstvennye neironnye seti v selektsii rastenii: nauch.-metod. rekom. – Novosibirsk, 2008–26 s.

41. Chanyshev D.I., Aleinikov A.F. Prognozirovanie kachestva pishchevogo syr’ya na rannikh stadiyakh ego proizvodstva // Sib. nauch. vestn. – 2016. – N 20. – S. 124–127.

42. Stergiou C., Siganos D. Neural Networks [Electronic resource]: URL: http://www.doc. ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html


Review

For citations:


Aleinikov A.F. METHOD OF NON-INVASIVE DETERMINATION OF FUNGAL DISEASES OF COMMON GARDEN STRAWBERRY. Siberian Herald of Agricultural Science. 2018;48(3):71-83. (In Russ.) https://doi.org/10.26898/0370-8799-2018-3-10

Views: 857


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)