METHOD OF NON-INVASIVE DETERMINATION OF FUNGAL DISEASES OF COMMON GARDEN STRAWBERRY
https://doi.org/10.26898/0370-8799-2018-3-10
Abstract
About the Author
A. F. AleinikovRussian Federation
Doctor of Science in Engineering, Professor, Head Researcher,
Krasnoobsk, Novosibirsk region, 630501;
20, Karl Marx Ave, Novosibirsk, 630073
References
1. . Linnik T.A. Povyshenie effektivnosti sposobov razmnozheniya sortov zemlyaniki sadovoi (Fragaria × ananassa Duch.), kharakterizuyushchikhsya nizkoi usoobrazuyushchei sposobnost’yu: dis. ... kand. s.-kh. nauk. – M., 2014. – 141 s.
2. Treivas L.Yu., Kashtanova O.F. Bolezni i vrediteli plodovykh rastenii: atlas-opredelitel’; izd. 3-e, isp. i dop. – M.: OOO «Fiton XXI», 2016. – 352 s.
3. Diagnostika boleznei rastenii. – [Elektronnyi resurs]: URL: http://www.activestudy.info/diagnostika-boleznej-rastenij/
4. Maas I.L. Compendium of strawberry diseases // Am. Phytopathol. Soc., St. Paul. 1984. – 138 p.
5. Petruk V.A., Borovikova T.V., Apolinar’eva I.K. Introduktsiya sortov zemlyaniki krupnoplodnoi v usloviyakh lesostepi Zapadnoi Sibiri // Sib. vestn. s.-kh. nauki. – 2016. – № 6. – S. 40–46.
6. Mikhailenko I.M., Voronkov I.V. Metody obnaruzheniya sornyakov, boleznei i vreditelei rastenii po dannym distantsionnogo zondirovaniya // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. – 2016. – T. 13, № 3. – S. 72–83.
7. Polder G., van der Heijden G.W., van Doorn J., Baltissen T.A. Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision // Biosyst. Eng. – 2014. – Т. 117. – Р. 35–42.
8. Moshou D., Bravo C., Oberti R., West J., Bodria L., McCartney A., Ramon H. Plant disease detection based on data fusion of hyper-spectral and multispectral fl uorescence imaging using Kohonen maps // Real-Time Imaging. – 2005. – N 11 (2). – Р. 75–83.
9. Rumpf T., Mahlein A.K., Steiner U., Oerke E.C., Dehne H.W., Plьmer L. Early detection and classification of plant diseases with support vector machines based on hyperspectral refl ectance // Comput. Electron. Agric. – 2010. – N 74 (1). – P. 91–99.
10. Mahlein A.K., Steiner U., Hillnhьtter C., Dehne H.W., Oerke E.C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases // Plant Methods. – 2012. – N 8 (1). – P. 3.
11. Rong Zhou, Shun ‘chi Kaneko, Fumio Tanaka et al. Disease detection of Cercospora Leaf Spot in sugar beet by robust template matching // Computers and Electronics in Agriculture. – 2014. – Vol. 108. – P. 58–70.
12. Polder G., van der Heijden G., Jalink H., Snel J.F.H. Correcting and matching time sequence images of plant leaves using penalized likelihood warping and robust point matching. // Comput. Electron. Agric. – 2007. – Vol. 55 (1). – P. 1–15.
13. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. – M.: Tekhnosfera, 2012. – 1104 s.
14. Pal’chikova I.G., Aleinikov A.F., Chugui Yu.V., Vorob’ev V.V., Yarushin T.V., Sartakov V.Yu., Makashev Yu.D., Shvydkov A.N. Portativnyi analizator tsveta poverkhnosti obraztsov biologicheskoi tkani // Sib. nauch. vestn. – 2013. – N 17. – S. 171–175.
15. Pal’chikova I.G., Aleinikov A.F., Vorob’ev V.V., Yarushin T.V., Sartakov V.Yu., Makashev Yu.D., Smirnov E.S. Analizator tsvetovykh kharakteristik poverkhnostei // Sudebnaya ekspertiza: rossiiskii i mezhdunarodnyi opyt: materialy 2-i mezhdunar. nauch.-prakt. konf. (Volgograd, 21–22 maya 2014 g.). – Volgograd: VA MVD Rossii, 2014. – S. 368–372.
16. Aleinikov A.F., Pal’chikova I.G., Obidin Yu. V., Smirnov E.S., Glyanenko V.S., Chugui Yu.V. Tsifrovaya videosistema dlya opredeleniya i analiza tsvetovykh kharakteristik myasnogo syr’ya // Sib. vestn. s.-kh. nauki. – 2013. – № 1. – S. 78–88.
17. Pal’chikova I.G., Obidin Yu.V., Smirnov E.S., Aleinikov A.F., Chugui Yu.V. Programmnoe obespechenie eksperimental’noi ustanovki dlya izmereniya tsvetovykh kharakteristik myasa // Sistema tekhnologii i mashin dlya innovatsionnogo razvitiya APK Rossii: sb. nauch. dokl. Mezhdunar. nauch.-tekhn. konf., posvyashchennoi 145-letiyu so dnya rozhdeniya osnovopolozhnika zemledel’cheskoi mekhaniki V.P. Goryachkina. – 2013. – S. 343–346.
18. Pal’chikova I.G., Aleinikov A.F., Smirnov E.S., Chugui Yu.V., Shvydkov A.N., Nitsievskaya K.N., Sartakov V.Yu., Yarushin T.V. Portativnyi tsvetovoi analizator kachestvennykh izmenenii myasa ptitsy // Dostizheniya nauki i tekhniki v APK. – 2015. – N 9. – S. 80–83.
19. Chaerle L., Van der Straeten D. Imaging techniques and the early detection of plant stress // Trends Plant Sci. – 2000. – Vol. 5 (11). – P. 595–601.
20. Camargo A., Smith J.S. An image-processing based algorithm to automatically identify plant disease visual symptoms // Biosyst. Eng. – 2009. – Vol. 102 – P. 9–21.
21. Arivazhagan S., NewlinShebiah R., Ananthi S., Vishnu Varthini S. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features // Agric. Eng. Int.: CIGRJ. – 2013. – Vol. 15 (1). – P. 211–217.
22. Camargo A., Smith J.S. An image processing based algorithm to automatically identify crop disease visual symptoms // Biosyst. Eng. – 2009. – Vol. 102 (1). – P. 9–21.
23. Chaudhary Piyush, Chaudhari Anand K., Cheeran A.N., Godara Sharda. Color transform based approach for disease spot detection on crop leaf // Int. JComput. Sci. Telecommun. – 2012. – Vol. 3 (6). – P. 65–70.
24. Tushar H. Jaware, Ravindra D. Badgujar, Prashant G. Patil. Crop disease detection using image segmentation, National Conference on Advances in Communication and Computing World(Dhulia, Maharashtra, India) // J. of Science and Technology. – 2012. – P. 190–194.
25. Sanjay B. Dhaygude, Nitin P. Kumbhar. Agricultural plant Leaf Disease Detection Using Image Processing // International J. of Advanced Research in Electrical, Electronics and Instrumentation Engineering , S & S Publication – 2013. – Vol. 2, Is. 1. – P. 599–602.
26. Tian Y., Zhao C., Lu S., Guo X. SVM-based multiple classifier system for recognition of wheat leaf diseases. In: World Automation Congress (WAC 2012). Puerto Vallarta, Mexico. – 2012. – Р. 189–193.
27. Anand H. Kulkarni, Ashwin Patil R.K. Applying image processing technique to detect plant diseases // International J. of Modern Engineering Research. – 2012. – Vol. 2. – Is. 5. – P. 3661–3664.
28. Argenti F., Alparone L., Benelli G. Fast algorithms for texture analysis using co-occurrence matrices // Radar and Signal Processing, IEE Proceedings. – 1990. – N 6. – Vol. 137. – Is. 6. – P. 443–448.
29. Al-Bashish D., Braik M., Bani-Ahmad S. Detection and classification of leaf diseases using K-means-based segmentation and neural networks based classification // Inform. Technol. J.P. – 2011. – Vol. 10.– P. 267–275.
30. Al-Hiary H., Bani-Ahmad S., Reyalat M., Braik M., ALRahamneh Z. Fast and accurate detection and classification of crop diseases // Int. J. Comput. – 2011. – Appl. 17. – P.31–38.
31. Kiran R., Ujwalla G. An overview of the research on crop leaves disease detection using image processing techniques// IOSR J. Comput. Eng. (IOSR-JCE). – 2014. – Vol. 16 (1). – P. 10–16.
32. Revathi P., Hemalatha M. Classification of Cotton Leaf Spot Diseases Using Image Processing Edge Detection Techniques // IEEE International Conference on Emerging Trends in Science, Engineering and Technology (Tiruchirappalli, Tamilnadu, India). – 2012. – P. 169–173.
33. Yan-Cheng Zhang, Han-Ping Mao, Bo Hu, Ming-Xi Li. Feature Selection of Cotton Disease leaves Image Based on Fuzzy feature Selection Techniques // Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition (Beijing, China, Nov.). – 2007. – P. 124–129.
34. Menukaewjinda A., Kumsawat P., Attakitmongcol K., Srikaew A. Grape leaf disease detection from color imagery using hybrid intelligent system // Proceedings of electrical Engineering/electronics, Computer, Telecommunications and Information technology (ECTI-CON). – 2008. – Vol. 1. – P. 513–516
35. Haiguang Wang, Guanlin Li, Zhanhong Ma, Xiaolong Li. Image Recognition of Plant Diseases Based on Principal Component Analysis and Neural // Networks, 8th International Conference on Natural Computation(Chongqing, China) . – 2012 – P. 246–251.
36. Mokhled S., Al-Tarawneh. An Empirical Investigation of Olive Leave Spot Disease Using AutoCropping Segmentation and Fuzzy C-Means Classification // World Applied Sciences Journal. – 2013. – Vol. 23 – N. 9. – P. 1207–1211.
37. Petrellis Nikos. A Smart Phone Image Processing Application for Plant Disease Diagnosis // 6th International Conference on Modern Circuits and Systems Technologies (MOCAST). – May 04–06. – 2017.
38. Aleinikov A.F., Barillo D.V. Opredelenie kachestva produktov s pomoshch’yu smartfona // Pishcha, ekologiya, kachestvo: tr. XIV mezhdunar. nauch.-prak. Konf. (Novosibirsk, 8–10 noyabrya 2017 g.). – Novosibirsk: Zolotoi kolos, 2017. – S. 36–40.
39. Loginov V. Obzor poleznykh prilozhenii dlya smartfonov i planshetov. – [Elektronnyi resurs]: https://www.dgl.ru/articles/obzorpoleznyh-prilojeniy-dlya-smartfonov-i-planshetov-vse-svoe-noshu-s-soboy_5632.html
40. Aleinikov A.F., Stepochkin P.I., Grebennikova I.G., Chanyshev D.I., Golyshev D. N. Programmno-algoritmicheskie sredstva i iskusstvennye neironnye seti v selektsii rastenii: nauch.-metod. rekom. – Novosibirsk, 2008–26 s.
41. Chanyshev D.I., Aleinikov A.F. Prognozirovanie kachestva pishchevogo syr’ya na rannikh stadiyakh ego proizvodstva // Sib. nauch. vestn. – 2016. – N 20. – S. 124–127.
42. Stergiou C., Siganos D. Neural Networks [Electronic resource]: URL: http://www.doc. ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
Review
For citations:
Aleinikov A.F. METHOD OF NON-INVASIVE DETERMINATION OF FUNGAL DISEASES OF COMMON GARDEN STRAWBERRY. Siberian Herald of Agricultural Science. 2018;48(3):71-83. (In Russ.) https://doi.org/10.26898/0370-8799-2018-3-10