Preview

Siberian Herald of Agricultural Science

Advanced search

Architecture and principles of work of agrarian intelligent system

https://doi.org/10.26898/0370-8799-2019-4-8

Abstract

The architecture of an agrarian intelligent system is proposed, which forms the basis for a selflearning management decision support system. The system is designed to cover all stages of the preliminary analysis – from the agricultural problem formulation to the provision of an analytical report, forecast or recommendation. Based on the knowledge generated by the system, a person who does not even have a special education in agriculture can make an adequate managerial decision. The system consists of the following set of modules and blocks: the space of agricultural tasks, the space of data sources, data storage, journals, the space of models, the documentation space of decision support, the task (as an element of space), formalization of user data, formation of an input data array for applying the model, the model output data, indicators, models, the access to journals, data selection, the active circuit of the agrarian intelligent system, nodes of the agrarian intelligent system. In the future this system will be able to automate the mаnаgement of agricultural processes within the framework of the approach referred to as “Smart farming”. It is also proposed to use, in addition to the well-known models (imitation, optimization, and others), the concept of agent modeling, on which many modern foreign systems of predictive technologies in agriculture are based. The fl exibility of the system allows one to adapt it in order to solve the widest range of agricultural producer problems depending on the enterprise production specialization, climatic conditions of agricultural activities, the choice of cultivated crops and the level of intensifi cation of agricultural technologies. The system is built as fl exible and wide as possible in order to adapt to various requests, including those that may arise in the future, but have not yet been formulated at present.

About the Authors

V. K. Kalichkin
Siberian Federal Scientifi c Centre of AgroBioTechnologies of the Russian Academy of Sciences
Russian Federation

Doctor of Science in Agriculture, Head Researcher

PO Box 463, SFSCA RAS, Krasnoobsk, Novosibirsk Region, 630501



R. A. Koryakin
Siberian Federal Scientifi c Centre of AgroBioTechnologies of the Russian Academy of Sciences
Russian Federation
Candidate of Science in Physics and Mathematics, Senior Researcher


P. K. Kutsenogiy
Siberian Federal Scientifi c Centre of AgroBioTechnologies of the Russian Academy of Sciences ; Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
P.K., Candidate of Science in Physics and Mathematics, Lead Researcher


References

1. Antle J.M., Basso B., Conant R.T., Charles H., Godfray J., Jones J.W., Herrero M., Howitt R.E., Keating B.A., Munoz-Carpena R., Rosenzweig C., Tittonell P., Wheeler T.R. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agricultural Systems, 2017, vol. 155, pp. 255–268. DOI: 10.1016/ j.agsy.2016.10.002.

2. Janssen S.J.C., Porter C.H., Moore A.D., Athanasiadis I.N., Foster I., Jones J.W., Antle J.M. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems, 2017, vol. 155, pp. 200– 212. DOI: 10.1016/j.agsy.2016.09.017.

3. Ditzler L., Klerkx L., Chan-Dentoni J., Posthumus H., Krupnik T.J., Ridaura S.L., Andersson J.A., Baudron F., Groot J.C.J. Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation. Agricultural Systems, 2018, vol. 164, pp. 20–30. DOI: 10.1016/ j.agsy.2018.03.006.

4. Bosch J. From software product lines to software ecosystems. Proceedings of the 13th international software product line conference. Carnegie Mellon University, 2009, pp. 111– 119.

5. J. Te Molder J., van Lier B., Jansen S. Clopenness of Systems: The Interwoven Nature of Ecosystems. IWSECO@ ICSOB, 2011, pp. 52–64. URL: http://ceur-ws.org/Vol-746/ IWSECO2011-5-MolderLierJansen.pdf.

6. Manikas K., Hansen K.M. Software ecosystems – A systematic literature review. Journal of Systems and Software, 2013, vol. 86, no. 5, pp. 1294-1306. DOI: 10.1016/j.jss.2012.12.026

7. Kruize J. W., Wolfert J., Scholten H., Verdouw C.N., Kassahun A., Beulens A.J.M. A reference architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture, 2016, vol. 125, pp. 12–28. DOI: 10.1016/ j.compag.2016.04.011.

8. Kogalovskii M.R., Kalinichenko L.A. Kontseptual’noe i ontologicheskoe modelirovanie v informatsionnykh sistemakh [Conceptual and ontological modeling in information systems]. Programmirovanie [Programming], 2009, no. 5, pp. 3–25. (In Russian).

9. Palagin A.V., Petrenko N.G. Sistemno-ontologicheskii analiz predmetnoi oblasti [Systemontological analysis of the subject area]. USiM [USiM], 2009, no. 4, pp. 3–14. (In Russian).

10. Sorokin A.B. Kontseptual’noe proektirovanie intellektual’nykh sistem podderzhki prinyatiya [Conceptual design of intelligent decision support system]. Ontologiya proektirovaniya [Ontology of designing], 2017, vol. 7, no. 3 (25), pp. 247–269. DOI: 10.18287/2223-9537-20177-3-247-269. (In Russian).

11. Sшrensen C.G., Fountas S., Nash E., Pesonen L., Bochtis D., Pedersen S.M., Basso B., Blackmore S.B. Conceptual model of a future farm management information system. Computers and electronics in agriculture, 2010, vol. 72, no. 1, pp. 37-47. DOI:10.1016/ j.compag.2010.02.003.

12. Karmanov I.I., Bulgakov D.S. Algoritm otsenki produktivnosti poch-venno-agroekologicheskikh uslovii vozdelyvaniya sel’skokhozyaistvennykh kul’tur [Algorithm for assessing the productivity of soil-agro-ecological conditions for the cultivation of crops]. Plodorodie [The Journal Plodorodie], 2007, no. 5, pp. 37–40. (In Russian).

13. Karmanov I.I., Bulgakov D.S. Metodika pochvenno-agroklimaticheskoi otsenki pakhotnykh zemel’ dlya kadastra [Methodology of soil and agroclimatic assessment of arable land for the cadastre]. M.: APR Publ., 2012. 121 p. (In Russian).

14. Rozhkov V.A. Opyt razrabotki natsional’noi sistemy otsenki zemel’ [Experience in elaborating the national system for estimating the land suitability]. Byulleten’ Pochvennogo instituta im. V.V. Dokuchaeva [Dokuchaev Soil Bulletin], 2014, Vyp. 76, pp. 33–51. (In Russian).

15. Le Q.B., Seidl R., Scholz R.W. Feedback loops and types of adaptation in the modelling of land-use decisions in an agent-based simulation. Environmental Modelling& Software, 2012. vol. 27, pp. 83–96. DOI: 10.1016 / j.envsoft.2011.09.002.

16. Groeneveld J., Mьller B., Buchmann C.M., Dressler G., Guo C., Hase N., Hoffmann F., John F., Klassert C., Lauf T., Liebelt V., Nolzen H., Pannicke N., Schulze J., Weise H., Schwarz N. Theoretical foundations of human decisionmaking in agent-based land use models – A review. Environmental modelling& software, 2017, vol. 87, pp. 39–48. DOI: 10.1016 / j.envsoft.2016.10.008.

17. Kolmogorov A.N. Izbrannye trudy. Matematika i mekhanika [Selected Works. Mathematics and Mechanics]. M.: Nauka Publ., 1985, pp. 393–404. (In Russian).

18. Mal’tsev A.I. Algebraicheskie sistemy [Algebraic Systems]. M.: Nauka Publ., 1970, 392 p. (In Russian).

19. Lavrov I.A., Maksimova L.L. Zadachi po teorii mnozhestv, matemati-cheskoi logike i teorii algoritmov [Problems in set theory, mathematical logic and theory of algorithms]. M.: Fizmatli Publ., 2002, 256 p. (In Russian).

20. Mardaev S.I. O chisle predlokal’no-tablichnykh superintuitsionistskikh propozitsional’nykh logic [On the number of prelocal-tabular superintuitionistic propositional logics]. Algebra i Logika [Algebra and Logics], 1984, vol. 23, no. 1, pp. 74–87. (In Russian).

21. Maksimova L.L., Yun V.F. Uznavaemost’ v predgeitingovykh i stroinykh logikakh [Recognizability in pre-Heiting and well-formed logics]. Sibirskie elektronnye matematicheskie izvestiya [Siberian Electronic Mathematical Reports], 2019, vol. 16, pp. 427–434. DOI: https://doi.org/10.33048/semi.2019.16.024. (In Russian).


Review

For citations:


Kalichkin V.K., Koryakin R.A., Kutsenogiy P.K. Architecture and principles of work of agrarian intelligent system. Siberian Herald of Agricultural Science. 2019;49(4):65-75. (In Russ.) https://doi.org/10.26898/0370-8799-2019-4-8

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)