

Diagnostics of adaptive and productive properties of Linum usitatissimum L. in various agroecological zones of the Tyumen region
https://doi.org/10.26898/0370-8799-2024-11-6
Abstract
The article presents the results of testing the fiber flax varieties (G1, Tomsky-16), (G2, Grant), (G3, Alizee), (G4, Betertelsdorf 6884/60), (G5, Dukat), (G6, Mayak) for four traits (yield of straw, flax straw, fiber, seeds) and adaptability. The agroecological study of fiber flax varieties was carried out in two environmental conditions of the Tyumen region (E1 – northern forest-steppe, Omutinsky district, 56°45' N, 67°70' E, E2 – taiga, Tobolsk district, 58°11' N 68°15' E). Reliable differences (p < 0.05; p < 0.01) in productivity were established between the varieties. The maximum straw yield (563.3 ± 8.45 – 466.9 ± 10.30 g/m2) was revealed in genotypes G1, G3 under E2 conditions, the yield of flax straw – G3, G1 (504.2 ± 15.32 – 391.2 ± 10.44 g/m2) in E2, the yield of fiber – G3 (300.4, ± 4.61 g/m2) in E2, the yield of seeds – G1, G6 (88.1 ± 3.60 – 87.5 ± 1.18 g/m2) in the E2 environment, while in two points high yield of straw and flax straw was noted in G1 and G3. According to the analysis of variance, the contribution of the genotype to the overall variability of straw (54.8%) and seed (61.2%) yields in the E2 environment was reliably significant (p < 0.05; p < 0.01); environmental conditions influenced the formation of seed yields in both ecological points (36.1–29.8%). It was revealed that in the structure of genotype-environment interaction, the first two principal components (IPCA) determined 69.9% of the variation in straw yield, 81.8% of the flax straw yield, 81.5% of the fiber yield, 86.8% of the seeds yield in these environmental conditions. Using the selection index (GSI), the most stable genotypes were identified in terms of straw yield (E1 – G1, G3; E2 – G1, G2), flax straw (E1 – G1, G3; E2 – G1, G3), f iber (E1 – G1; E2 – G3), and seeds (E1 – G4, G6; E2 – G1, G6). The genotypes that showed high yield and stability according to the complex analysis can be recommended for use in adaptive selection, as well as for cultivation in the studied agroecological points of the Tyumen region.
About the Author
K. P. KorolevRussian Federation
Candidate of Science in Agriculture, Associate Professor
6, Volodarskogo St., Tyumen, 625003
References
1. Ansari R., Zarshenas M.M., Dadbakhsh A.H. A Review on Pharmacological and Clinical As pects of Linum usitatissimum L. Current Drug Discovery Technologies. 2019, vol. 16 (2), pp. 148–158. DOI: 10.2174/1570163815666180521101136.
2. Porokhovinova E.A. Genetic control of fertility restoration in CMS lines of flax (Linum usita tissimum L.). Trudy po prikladnoĭ botanike, ge netike i selekcii = Proceedings on applied bot any, genetics and breeding, 2017, no. 178 (1), рр. 68–81. (In Russian). DOI: 10.30901/2227-8834-2017-1-68-81.
3. Kutuzova S.N., Porokhovinova E.A., Brach N.B., Pavlov A.V. Worldwide gene pool of fiber flax at VIR, and breeding of rust-resis tant varieties. Trudy po prikladnoĭ botanike, ge netike i selekcii = Proceedings on applied botany, genetics and breeding, 2020, no. 181 (2), pp. 57–64. (In Russian). DOI: 10.30901/2227-8834-2020-2-57-64.
4. Rozhmina T.A., Ryzhov A.I., Kuzemkin I.A., Kiseleva T.S. Intraspecific diversity of Linum usitatissimum L. and its role in the decision of a problem of raw maintenance of a country. Dos tizhenija nauki i tehniki APK. = Achievements of Science and Technology of AIC, 2017, vol. 31, no. 12, pp. 17–20. (In Russian).
5. Sertse D., You F.M., Ravichandran S., Clouti er S. The genetic makeup of flax illustrates the ecological and anthropogenic selection that has led to its ecogeographic adaptation. Molecular Phylogenetics Evolution, 2019. Vol. 137. P. 22 32. DOI: 10.1016/j.ympev.2019.04.010.
6. Popova G.A., Rogalskaya N.B., Trofimova V.M. World’s genetic resources of the VIR flax collec tion in the creation of Tomsk selection varieties. Sibirskij vestnik sel'skohozjajstvennoj nauki = Siberian Herald of Agricultural Science, 2023, vol. 53, no. 4. pp. 34–47. (In Russian). DOI: 10.26898/0370-8799-2023-4-4.
7. Stepin A.D., Rysev M.N., Ryseva T.A., Utki na S.V., Romanova N.V. Screening of fiber flax varieties from the VIR collection according to f lax fiber yield and adaptability parameters in the conditions of the Nortwestern region. Agrarnaja nauka Evro-Severo-Vostoka = Agricultu- ral Science Euro-North-East, 2020, no. 21 (2). pp. 141–151. (In Russian). DOI: 10.30766/2072-9081.2020.21.2.141–151.
8. Kuzemkin I.A., Rozhmina T.A. Screening of ac cessions from fiber flax collection by producti- vity and their adaptability to the conditions of the North-West region of Russia. Agrarna ja nauka Evro-Severo-Vostoka = Agricultur al Science Euro-North-East, 2022, no. 23 (5), pp. 666–674. (In Russian). DOI: 10.30766/2072-9081.2022.23.5.666-674.
9. Bogdan V.Z., Bogdan T.M., Litarnaya M.A., Ivanov S.A. Agroecological adaptedness of fi ber flax specimens. Biotehnologija i selekcija rastenij = Plant Biotechnology and Breeding, 2023, no. 6 (3), pp. 5–13. (In Russian). DOI: 10.30901/2658-6266-2023-3-o2.
10. Korolev K.P., Bome N.A. Evaluation of flax (Linum usitatissimum L.) genotypes on environ mental adaptability and stability in north-east ern Belarus. Sel'skohozjajstvennaja biologija = Agricultural biology, 2017, no. 52 (3), рр. 615 621. (In Russian). DOI: 10.15389/agrobiology.2017.3.615rus.
11. Hoque A., Fiedler J.D., Rahman M. Genetic diversity analysis of a flax (Linum usitatissi mum L.) global collection. BMC Genomics, 2020, vol. 21, рр. 557–559. DOI: 10.1186/s12864-020-06922-2.
12. Valdés-Florido A., Tan L., Maguilla E., Simón-Porcar V.I., Zhou Y.H., Arroyo J., Es cudero M. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit. Annals of Botany, 2023, vol. 132 (5), pp. 949–962. DOI: 10.1093/aob/mcad139.
13. Bocianowski J., Liersch A. Multidimensional analysis of diversity in genotypes of winter oil seed rape (Brassica napus L.). Agronomy, 2022, vol. 12 (3). р. 633. DOI: 10. 3390/agron omy12030633.
14. Kumar A., Sharma N., Kumar A., Kumar D., Jnanesha A.C., Gupta A.K., Chanotiya C.S., Bisht D., Lal RK. Differential responses of geno- type × environment interaction on agronomic interventions affect the yield and quality of es sential oil of interspecific basil hybrid of Oci mum basilicum L. × Ocimum kilimandschar icum. Ecological Genetics Genomics, 2024, vol. 3, Article. 100217. DOI: 10. 1016/j.egg.2024. 100217.
15. Oladosu Y., Rafii M.Y., Abdullah N., Magaji U., Miah G., Hussin G., Ramli A. Genotype × En vironment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple loca tions in Malaysia. Acta Agriculturae Scandina vica, 2017, vol. 67 (7), рр. 590–606. DOI: 10. 1080/09064710.
16. Pour-Aboughadareh A., Barati A., Gholipoor A., Zali H., Marzooghian A., Koohkan S.A., Shah bazi-Homonloo K., Houseinpour A. Deciphe- ring genotype-by-environment interaction in barley genotypes using different adaptability and stability methods. Journal of Crop Science and Biotechnology, 2023, vol. 26. рр. 547–562. DOI: 10. 1007/s12892- 023- 00199-z.
17. Nowosad K., Tratwal A., Bocianowski J. Geno type by environment interaction for grain yield in spring barley using additive main effects and multiplicative interaction model. Cereal Research Communications, 2018, vol. 46 (4), рр. 729–738. DOI: 10.1556/0806.46.2018.046.
18. Gerrano A., van Rensburg W., Mathew I., Shayanowako A., Bairu M., Venter S., Swart W., Mofokeng A., Mellem J., Labuschagne M. Ef fects of genotype and genotype × environment interactions on grain yield of cowpea genotypes in a dryland farming system in South Afri ca. Euphytica, 2020. vol. 216, pp. 1–11. DOI: 10.1007/s10681-020-02611-z.
19. Vaezi B., Pour-Aboughadareh A., Mohamma di R., Mehraban A., Hossein-Pour T., Koohkan E., Ghasemi S., Moradkhani H., Siddique KHM. Integrating different stability models to investigate genotype × environment interactions and identify stable and Journal of Applied Ge netics high-yielding barley genotypes Euphyti ca, 2019, vol. 215, Article 63. DOI: 10. 1007/s10681-019-2386-5.
20. Abdala L.J., Otegui M.E., Mauro G.D. On-farm soybean genetic progress and yield stability during the early 21st century: a case study of a commercial breeding program in Argentina and Brazil. Field Crops Research, 2024, vol. 308, p. 109277. DOI: 10.1016/j.fcr.2024.109277.
21. Amelework A.B., Bairu M.W., Marx R., Laing M., Venter S.L. Genotype × environment interaction and stability analysis of selected cassava Cultivars in South Africa. Plants, 2023, vol. 12 (13), Article. 2490. DOI: 10. 3390/plants12132490.
22. Abrha G.V., Kebede S.A., Bedada L.T., Bere cha Y.G., Adugna G.A. Genotype by envi ronment interaction and yield stability of cof fee (Coffea arabica L.) genotypes evaluated in western Ethiopia. Plant Production Science, 2022, vol. 25 (4). pp. 467–483. DOI: 10.1080/1343943X.2022.2136722.
Review
For citations:
Korolev K.P. Diagnostics of adaptive and productive properties of Linum usitatissimum L. in various agroecological zones of the Tyumen region. Siberian Herald of Agricultural Science. 2024;54(11):61-70. https://doi.org/10.26898/0370-8799-2024-11-6