Preview

Siberian Herald of Agricultural Science

Advanced search

WATER-PHYSICAL PROPERTIES OF DRAINED PEAT SOILS OF THE SUBTAIGA ZONE OF NORTHERN TRANS-URAL REGION

Abstract

Results are given from long-term (1973–2013) studies on water-physical properties of seasonally frozen medium-textured peat soils of the subtaiga zone of Northern Trans-Ural region. It has been established that the medium-textured peat soil after drainage and before primary tillage 84 percent consists of particles of more than 10 mm in size. For two years, the number of particles of 10–3 mm in size increased 4.1–4.4 times in black and green fallows, 3.3 times in potato, 2.3 times in perennial grasses. Mineral fertilizers have lesser increased the number of agronomically valuable aggregates than tillage did. They showed a particularly weak effect (7 %) in perennial grasses. The density of peat soil bulk in the 0.2 m arable layer has increased by 15 percent as influenced by two-year fallowing. This occurred due to soil compaction and increased degree of decomposition by 4–6 percent. In perennial grasses after annual crops, the main changes in the soil bulk density occurred within 20 years after drainage. Compared with the initial data, the soil bulk density in the root layer has increased by 44.9%, at the depth of 0.6–1.0 m by 11%. Over the subsequent twenty years, the density of the entire one meter layer of soil increased by 5.0–5.6%. For 40-year period, the density in the 0.5 m layer of soil under perennial grasses after annual crops increased 3.6 times greater than that of the drained untilled peat soil did. The main increase in the density of the solid phase of soil occurred in the 0.3 m layer during 17 years. In the subsequent thirteen years, the intensity of this process decreased 4.4 times. In twenty years, the density of the solid phase of soil stabilized. At the depth of 0.6–1.0 m, it remained constant during all the years of study. As a result of adding mineral soil to peat soil, the density of the solid phase in the arable layer increased by 11.4–15.8%. The minimum moisture capacity of soil under perennial grasses in the 0.5 m layer decreased by 6.7% for 40 years, and made up 297.2 mm. With that, it has practically not changed for the last ten years. When applying mineral soil additives in a rate of 300 t/ha, the total moisture capacity in the arable layer decreased by 4.1–4.4%.

About the Authors

A. S. MOTORIN
Northern Trans-Ural State Agrarian University
Russian Federation

Doctor of Science in Agriculture, Professor

7, Respubliki St, Tyumen, 625003, Russia



A. V. BUKIN
Northern Trans-Ural State Agrarian University
Russian Federation

Candidate of Science in Biology, Associate Professor

7, Respubliki St, Tyumen, 625003, Russia



References

1. Maslov B.S. Gidrologiya torfyanykh bolot. – M.: Rossel’khozakademiya, 2009. – 266 s.

2. Inisheva L.I., Belova E.V. Agrokhimicheskie, biologicheskie svoistva i rezhimy osushennykh agrotorfyanykh pochv // Agrokhimiya. – 2003. – ¹ 4. – S. 22–28.

3. Bambalov N.N., Rakovich V.A. Rol’ bolot v biosfere. – Minsk: Belnauka, 2005. – 285 s.

4. Belkovskii V.I., Likhatsevich A.P., Meerovskii A.S., Yurchuk S., Ostrovski Ya. Ispol’zovanie i okhrana torfyanykh kompleksov v Belarusi i Pol’she. – Minsk: Khata, 2002. – 280 s.

5. Zaidel’man F.R. Mineral’nye i torfyanye pochvy polesskikh landshaftov. – M.: KRASAND, 2013. – 440 s.

6. Motorin A.S. Vliyanie glubiny zaleganiya gruntovykh vod na vodno-fizicheskie svoistva torfyanykh pochv Severnogo Zaural’ya // Sib. vestn. s.-kh. nauki. – 2015. – ¹ 1. – S. 5–11.

7. Kulikov Ya.K. Pochvenno-ekologicheskie osnovy optimizatsii sel’skokhozyaistvennykh ugodii Belarusi. – Minsk: BGU, 2000. – S. 24–32.

8. Sin’kevich E.I. Puti regulirovaniya plodorodiya torfyanykh pochv Evropeiskogo Severa. – L.: Nauka, 1985. – 266 s.

9. Novokhatin V.V. Melioratsiya bolotnykh landshaftov Zapadnoi Sibiri. – Tyumen‘: TGU, 2008. – 200 s.

10. Glistin M.V., Ustinov M.T. Sibirskaya melioratsiya zemel’: 50-letnii etap // Melioratsiya i vodnoe khozyaistvo. – 2016. – ¹ 3. – S. 44–47.

11. Kireicheva L.V. Innovatsionnye tekhnologii povysheniya produktivnosti melioriruemykh zemel’ Barabinskoi nizmennosti// Melioratsiya i vodnoe khozyaistvo. – 2015. – ¹ 6. – S. 45–50.

12. Motorin A.S. Plodorodie torfyanykh pochv Zapadnoi Sibiri. – Novosibirsk: GRPO SO RASKhN, 1999. – 284 s.

13. Mazhaiskii Yu.A., Kurchevskii S.M. Povyshenie produktivnosti melkozalezhnykh torfyanykh pochv pri vnesenii mineral’nykh dobavok // Agrokhimicheskii vestnik. – 2015. – ¹ 1. – S. 15–17.

14. Zaidel’man F.R. Metody ekologo-meliorativnykh izyskanii i issledovanii pochv. – M.: Kolos, 2008. – 486 s.

15. Vadyunina A.F., Korchagina Z.A. Metody issledovaniya fizicheskikh svoistv pochv. – M.: MGU, 1986. – 416 s.

16. Godlin M.M. Agregatno-dispersnyi i dispersnyi sostav torfyanykh pochv // Pochvovedenie. – 1969. – ¹ 5. – S. 113–121.


Review

For citations:


MOTORIN A.S., BUKIN A.V. WATER-PHYSICAL PROPERTIES OF DRAINED PEAT SOILS OF THE SUBTAIGA ZONE OF NORTHERN TRANS-URAL REGION. Siberian Herald of Agricultural Science. 2017;47(4):5-12. (In Russ.)

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)