STUDYING ACTIVATION OF A PHOTOSENSITIZER BY RADIATION WITH NON-SPECIFIC WAVELENGTH
Abstract
About the Authors
A. V. PAVLOVRussian Federation
Krasnoobsk, Novosibirsk Region, 630501, Russia
Candidate of Science in Biology, Senior Researcher
Е. СМЕРТИНА
Russian Federation
Krasnoobsk, Novosibirsk Region, 630501, Russia
Doctor of Science in Veterinary Medicine, Laboratory Head
References
1. Rozenkrants A.A., Slastnikova T.A., Durymanov M.O., Sobolev A.S. Melanokortinovye retseptory pervogo tipa i melanoma // Biokhimiya. – 2013. – T. 78, vyp. 11, – S. 1564–1575.
2. Azais H., Mordon S., Collinet P. Intraperitoneal photodynamic therapy for peritoneal metastasis of epithelial ovarian cancer // Limits and future prospects. Gynecol. Obstet. Fertil. Senol. – 2017. – N 31. – P. 2468–2475.
3. Estevez J., Ascencio M., Colin P. Continuous or fractionated photodynamic therapy? Comparison of three PDT schemes for ovarian peritoneal micrometastasis treatment in a rat model // Photodiagnosis Photodyn Ther. – 2010. – N 7 (4). – P. 251–257.
4. Guyon L., Ascencio M., Collinet P., Mordon S. Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer // Photodiagnosis Photodyn Ther. – 2012. – N 9 (1). – P. 16–31.
5. Rizvi I., Anbil S., Alagic N. PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model // Photochem Photobiol. – 2013. – N 89(4). – P. 942–952.
6. Denis T., Dai T., Izikson L. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease // Virulence. – 2011. – N 2(6). – P. 509–520.
7. Hamblin M. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes // Curr Opin Microbiol. – 2016. – N 3.– P. 67–73.
8. Mantareva V., Kussovski V., Angelov I. et al. Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms// Bioorganic & Medicinal Chemistry. – 2007. – Vol. 15 (14). – P. 4829–4835.
9. Pavlov A.V., Smertina E.Yu., Donchenko N.A. Antimikrobnoe deistvie fotosensibilizatora metilenovogo sinego na kul’turu Staphilococcus aureus // Sib. vestn. s-kh nauki. – 2013. – № 3. – S. 91–94.
10. Pupo Y.M., Gomes G.M., Santos E.B. et al. Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes // Acta Odontol Latinoam. – 2011. – N 24 (2). – P. 188–192.
11. Mantareva V., Kussovski V., Durmuє M. et al. Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation// Lasers Med Sci. – 2016.– N 31(8). – P. 1591–1598.
12. Hajim K., Salih D.S., Rassam Y.Z. Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus // Lasers Med Sci. – 2010. – P. 743–748.
13. Tubby S, Wilson M, Nair S. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent // BMC Microbiol. – 2009. – N 5, 9. – P. 211–219.
14. Durantini E. New insights into the antimicrobial blue light inactivation of Candida albicans // Virulence. – 2016. – N 7(5). – P. 493–497.
15. Agrawal T., Avci P., Gupta G.K., Rineh A., Lakshmanan S. Harnessing the power of light to treat staphylococcal infections focusing on MRSA // Curr Pharm – 2015. – N 21(16). – P. 2109–2121.
Review
For citations:
PAVLOV A.V., STUDYING ACTIVATION OF A PHOTOSENSITIZER BY RADIATION WITH NON-SPECIFIC WAVELENGTH. Siberian Herald of Agricultural Science. 2017;47(4):54-59. (In Russ.)