Preview

Siberian Herald of Agricultural Science

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Methodology for forming a digital farming management system

https://doi.org/10.26898/0370-8799-2024-3-1

Abstract

The paper presents methodological approaches for the creation of a digital farming management system (DFMS). A convergent approach, based on cognitive (conceptual) analysis methods, is employed in the research and applied to the formation of adaptive landscape farming systems. The fundamental principles of organizing DFMS include crop and environmental monitoring (in situ, remote sensing); the formation of farming system archetypes based on the analysis of long-term field experiments; spatial object modeling and land typology using GIS; planning and support for agrotechnologies to adapt to natural and economic conditions; modeling ecosystem services and biodiversity; assessing the impact on the sustainability and economics of crop production. The system is implemented using geoinformation models in a specific geographic coordinate. DFMS involves conducting a "inventory" of natural and production resources, as well as identifying limits of climatic, soil, and agrolandscape parameters at different levels of land use intensity. At each stage of organizing system blocks, methods of intelligent data analysis and machine learning are used, with the core of the system relying on the use of knowledge bases and logical rules of the subject area. A key element of the system is the scaling of the results of long-term field experiments and accumulated knowledge in different management areas based on the parameterization of the multi-level variability of farming systems and the formation of their archetypes. The practical implementation of the main provisions of DFMS allows approaching the solution of key issues related to reducing the level of uncertainty and associated risks in agriculture. This is achieved through scientifically justified organization of rational land use, increasing the resilience of crop production in different land use conditions, and providing information support to rural producers.

About the Authors

V. K. Kalichkin
Siberian Federal Scientific Centre of AgroBioTechnologies of the Russian Academy of Sciences
Russian Federation

Vladimir K. Kalichkin, Doctor of Science in Agriculture, Professor, Head Researcher

PO Box 463, Krasnoobsk, Novosibirsk Region, 630501



K. Yu. Maksimovich
Siberian Federal Scientific Centre of AgroBioTechnologies of the Russian Academy of Sciences
Russian Federation
Kirill Yu. Maksimovich, Researcher

Krasnoobsk, Novosibirsk Region



References

1. Rijswijk K., Klerkx L., Bacco M., Bartolini F., Bulten E., Debruyne L., Brunori G. Digital transformation of agriculture and rural areas: A socio-cyber-physical system framework to support responsibilisation. Journal of Rural Studies, 2021, vol. 85, pp. 79–90. DOI: 10.1016/j. jrurstud.2021.05.003.

2. Ingram J., Maye D. What are the implications of digitalisation for agricultural knowledge? Frontiers in Sustainable Food Systems, 2020, vol. 4, p. 66. DOI: 10.3389/fsufs.2020.00066.

3. Saiz-Rubio V., Rovira-Más F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 2020, vol. 10, no. 2, p. 207. DOI: 10.3390/agronomy10020207.

4. Kim M-Y., Lee K.H. Electrochemical Sensors for Sustainable Precision Agriculture – A Review. Frontiers in Chemistry, 2022, vol. 10, p. 848320. DOI: 10.3389/fchem.2022.848320.

5. Navarro E., Costa N., Pereira A. A Systematic Review of IoT Solutions for Smart Farming. Sensors, 2020, vol. 20, no. 15, p. 4231. DOI: 10.3390/s20154231.

6. Villa-Henriksen A., Edwards G.T., Pesonen L.A., Green O., Sørensen C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosystems Engineering, 2020, vol. 191, pp. 60–84. DOI: 10.1016/j.biosystemseng.2019.12.013.

7. Julie I., Damian M., Clive B., Barnes A., Bear C., Bell M., Manning L.What are the priority research questions for digital agriculture? Land Use Policy, 2022, vol. 114, p. 105962. DOI: 10.1016/j.landusepol.2021.105962.

8. Javaid M., Haleem A., Singh R.P., Suman R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 2022, vol. 3, pp. 150–164. DOI: 10.1016/j.ijin.2022.09.004.

9. Kumar S., Khan N. Application of remote sensing and GIS in land resource management. Journal of Geography and Cartography, 2021, vol. 4, no. 2, pp. 78–81. DOI: 10.24294//jgc.v4i2.437.

10. Jung J., Maeda M., Chang A., Bhandari M., Ashapure A., Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 2021, vol. 70, pp. 15–22. DOI: 10.1016/j.copbio.2020.09.003.

11. Ge Y., Zhang X., Atkinson P.M., Stein A., Li L. Geoscience-aware deep learning: A new paradigm for remote sensing. Science of Remote Sensing, 2022, vol. 5, p. 100047. DOI: 10.1016/j.srs.2022.100047.

12. Omia E., Bae H., Park E., Kim M.S., Baek I., Kabenge I., Cho B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sensing, 2023, vol. 15, no. 2, p. 354. DOI: 10.3390/rs15020354.

13. Kiryushin V.I. System of scientific and innovative support of adaptive landscape farming technologies. Zemledelie = Zemledelie, 2022, no. 2, pp. 3–7. (In Russian). DOI: 10.24412/00443913-2022-2-3-7.

14. Ullo S.L., Sinha G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sensing, 2021, vol. 13, no. 13, p. 2585. DOI: 10.3390/rs13132585.

15. Hassan S.I., Alam M.M., Illahi U., Al Ghamdi M.A., Almotiri S.H., Su’ud M.M. A systematic review on monitoring and advanced control strategies in smart agriculture. Ieee Access, 2021, vol. 9, pp. 32517–32548. DOI: 10.1109/ACCESS.2021.3057865.

16. Chamara N., Islam M.D., Bai G.F., Shi Y., Ge Y. Ag-IoT for crop and environment monitoring: Past, present, and future. Agricultural Systems, 2022, vol. 203, p. 103497. DOI: 10.1016/j.agsy.2022.103497.

17. Aaron E.M., Warner T.A., Fang F. Implementation of machine-learning classification in remote sensing: an applied review. International journal of remote sensing, 2018, vol. 39, no. 9, pp. 2784-2817. DOI: 10.1080/01431161.2018.1433343.

18. Omia E., Bae H., Park E., Kim M.S., Baek I., Kabenge I., Cho B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sensing, 2023, vol. 15, no. 2, p. 354. DOI: 10.3390/rs15020354.

19. Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. Machine learning in agriculture: A review. Sensors, 2018, vol. 18, no. 8, p. 2674. DOI: 10.3390/s18082674.

20. Debauche O., Mahmoudi S., Manneback P., Lebeau F. Cloud and distributed architectures for data management in agriculture 4.0: Review and future trends. Journal of King Saud University-Computer and Information Sciences, 2022, vol. 34, no. 9, pp. 7494–7514. DOI: 10.1016/j.jksuci.2021.09.015.

21. Benos L., Tagarakis A.C., Dolias G., Berruto R., Kateris D., Bochtis D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors, 2021, vol. 21, no. 11, p. 3758. DOI: 10.3390/s21113758.

22. De Oliveira M.A., Monteiro A.V., Vieira Filho J. A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network. Sensors, 2018, vol. 18, p. 2955. DOI: 10.3390/s21113758.

23. Yang B., Ma J., Yao X., Cao W., Zhu Y. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery. Sensors, 2021, vol. 21, p. 613. DOI: 10.3390/s21020613.

24. Han J., Zhang Z., Cao J., Luo Y., Zhang L., Li Z., Zhang J. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 2020, vol. 12, no. 2, р. 236. DOI: 10.3390/rs12020236.

25. Kalichkin V.K., Fedorov D.S., Alsova O.K., Maksimovich K.Yu. Development of a program for analysis and forecasting of agricultural crop yields. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC, 2022, vol. 36, no. 1, pp. 51–56. (In Russian). DOI: 10.53859/02352451_2022_36_0_0.

26. Kalichkin V.K., Logacheva O.M., Sigitov A.A., Garafutdinova L.V. Geoinformation system integration and methods of multi-criteria decision analysis for assessment of land suitability for agricultural use. Sibirskii vestnik sel'skokhozyaistvennoi nauki = Siberian Herald of Agricultural Science, 2020, vol. 50, no. 6, pp. 93–105. (In Russian). DOI: 10.26898/0370-8799-2020-6-11.

27. Bhullar A., Nadeem K., Ali R.A. Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Scientific Reports, 2023, vol. 13, p. 6823. DOI: 10.1038/s41598-023-33840-6.

28. Ismaili M., Krimissa S., Namous M., Htitiou A., Abdelrahman K., Fnais M.S., Benabdelouahab T. Assessment of soil suitability using machine learning in arid and semi-arid regions. Agronomy, 2023, vol. 13, no. 1, p. 165. DOI: 10.3390/agronomy13010165.

29. Taghizadeh-Mehrjardi R., Nabiollahi K., Rasoli L., Kerry R., Scholten T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy, 2020, vol. 10, no. 4, p. 573. DOI: 10.3390/agronomy10040573.

30. Ding Y., Wang L., Li Y., Li D. Model predictive control and its application in agriculture: A review. Computers and Electronics in Agriculture, 2018, vol. 151, pp. 104–117. DOI: 10.1016/j.compag.2018.06.004.

31. Yakushev V.P., Yakushev V.V., Blokhina S.Yu., Blokhin Yu.I., Matveenko D.A. Information support for modern farming systems in Russia. Vestnik Rossiiskoi akademii nauk = Bulletin of the Russian Academy of Sciences, 2021, vol. 91, no. 8, pp. 755–768. (In Russian). DOI: 10.31857/S0869587321080090.

32. Nazarenko A.E. Modeling the effects of land use transformation using ecosystem service assessments. Geograficheskij vestnik = Geographical Bulletin, 2021, no. 1 (56), pp. 173–186. (In Russian). DOI: 10.17072/2079-7877-2021-1-173-186.

33. Kiryushin V.I. Ecological principles of designing agricultural landscapes. St. Petersburg, «KVADRO» Publ., 2018, 568 p. (In Russian)

34. Jiang L., Wang Z., Zuo Q., Du H. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. Journal of Cleaner Production, 2023, vol. 397, p. 136485. DOI: 10.1016/j.jclepro.2023.136485.

35. Barrios E., Gemmill-Herren B., Bicksler A., Siliprandi E., Brathwaite R., Moller S., Tittonell P. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosystems and People, 2020, vol. 16, no. 1, pp. 230–247. DOI: 10.1080/26395916.2020.1808705.

36. Kiryushin V.I. Methodology for comprehensive assessment of agricultural land. Pochvovedenie = Eurasian Soil Science, 2020, no. 7, pp. 871–879. (In Russian). DOI: 10.31857/S0032180X20070060.

37. Lajoie-O'Malley A., Bronson K., van der Burg S., Klerkx L. The future (s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 2020, vol. 45, pp. 101183. DOI: 10.1016/j.ecoser.2020.101183.


Review

For citations:


Kalichkin V.K., Maksimovich K.Yu. Methodology for forming a digital farming management system. Siberian Herald of Agricultural Science. 2024;54(3):5–20. (In Russ.) https://doi.org/10.26898/0370-8799-2024-3-1

Views: 163


ISSN 0370-8799 (Print)
ISSN 2658-462X (Online)